Search results

Search for "flood gun" in Full Text gives 25 result(s) in Beilstein Journal of Nanotechnology.

A combined gas-phase dissociative ionization, dissociative electron attachment and deposition study on the potential FEBID precursor [Au(CH3)2Cl]2

  • Elif Bilgilisoy,
  • Ali Kamali,
  • Thomas Xaver Gentner,
  • Gerd Ballmann,
  • Sjoerd Harder,
  • Hans-Peter Steinrück,
  • Hubertus Marbach and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2023, 14, 1178–1199, doi:10.3762/bjnano.14.98

Graphical Abstract
  • science studies have been carried out in the past using a 500 eV flood gun in the surface studies [29][30], and also in combination with higher energy FEBID studies [30][31]. In a recent study [32], we took a similar approach and investigated (CH3)AuP(CH3)3 as a potential gold precursor for FEBID. We used
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2023

Low-energy electron interaction and focused electron beam-induced deposition of molybdenum hexacarbonyl (Mo(CO)6)

  • Po-Yuan Shih,
  • Maicol Cipriani,
  • Christian Felix Hermanns,
  • Jens Oster,
  • Klaus Edinger,
  • Armin Gölzhäuser and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2022, 13, 182–191, doi:10.3762/bjnano.13.13

Graphical Abstract
  • flood gun, while the FEBID experiments are conducted with a focused electron beam at 5 keV under steady-state conditions, where continuous replenishment of precursors on a freshly exposed surface is provided. Furthermore, while the surface studies of W(CO)6 deposited on a gold surface were conducted at
PDF
Album
Full Research Paper
Published 04 Feb 2022

Exploring the fabrication and transfer mechanism of metallic nanostructures on carbon nanomembranes via focused electron beam induced processing

  • Christian Preischl,
  • Linh Hoang Le,
  • Elif Bilgilisoy,
  • Armin Gölzhäuser and
  • Hubertus Marbach

Beilstein J. Nanotechnol. 2021, 12, 319–329, doi:10.3762/bjnano.12.26

Graphical Abstract
  • molecules [32]. EBISA should also work with electrons of rather low energy fabricated by a flood gun instead of the focused electron beam. This macroscopic process is schematically depicted in Figure S6 (Supporting Information File 1). If the precursor gas dosage takes place directly after electron
  • etching of the Au layer a solution of KI/I2/H2O is used, whereas for the dissolution of Ag a solution of Fe(NO3)3 is necessary. The SAM was cross-linked into a CNM by using a flood gun employing 100 eV electrons and an electron dose of 60 mC/cm2 after the EBID structures were fabricated. Before removing
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2021

Imaging of SARS-CoV-2 infected Vero E6 cells by helium ion microscopy

  • Natalie Frese,
  • Patrick Schmerer,
  • Martin Wortmann,
  • Matthias Schürmann,
  • Matthias König,
  • Michael Westphal,
  • Friedemann Weber,
  • Holger Sudhoff and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2021, 12, 172–179, doi:10.3762/bjnano.12.13

Graphical Abstract
  • coatings, albeit only a few nanometers thick, can significantly alter and conceal fine details of biological nanostructures [2], which is noticeable in SEM images of virus particles [19][24]. Since in the HIM positive charge accumulates on insulating samples, a low-energy electron flood gun can be used for
  • of 0.2 to 0.4 pA. To avoid charging effects during secondary electron detection, an electron flood gun was used after each line scan, if not stated otherwise, with a flood energy of 540 eV, flood time of 10 µs and a focus of 107 V. It should be mentioned that the flood gun parameters have to be
  • ) of the cell seen in Figure 2b1, showing the virus particles on top of the cell membrane in a side view. Note that after the zoom-out in Figure 2c1, the previously imaged regions appear again brighter. After imaging Figure 2c2 with a dose of 1.9 × 1017 ions/cm2, the flood gun was turned off, which
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2021

Fusion of purple membranes triggered by immobilization on carbon nanomembranes

  • René Riedel,
  • Natalie Frese,
  • Fang Yang,
  • Martin Wortmann,
  • Raphael Dalpke,
  • Daniel Rhinow,
  • Norbert Hampp and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2021, 12, 93–101, doi:10.3762/bjnano.12.8

Graphical Abstract
  • electrons (SPECS flood gun) in high vacuum (10−7 mbar) using doses of 50 mC/cm2. The cross-linking of a NBPT SAM on gold on mica leads to an NBPT CNM. Preparation of PM Frozen wild-type (WT) and c-His-tagged purple membrane were thawed, vortexed and subsequently diluted to the desired optical density (OD
PDF
Album
Supp Info
Full Research Paper
Published 22 Jan 2021

Bio-imaging with the helium-ion microscope: A review

  • Matthias Schmidt,
  • James M. Byrne and
  • Ilari J. Maasilta

Beilstein J. Nanotechnol. 2021, 12, 1–23, doi:10.3762/bjnano.12.1

Graphical Abstract
  • resembles a field-emission scanning electron microscope (FE-SEM), but the use of helium ions rather than electrons provides several advantages, including higher surface sensitivity, larger depth of field, and a straightforward charge-compensating electron flood gun, which enables imaging of non-conductive
  • imaging of biological specimens. We also discuss some technical features of this unique type of instrument and highlight some of the new advances which will likely become more widely used in the years to come. Keywords: bio-imaging; flood gun; helium-ion microscopy; high resolution; HIM; HIM-SIMS
  • . This is possible owing to the combination of a large depth of focus and the possibility of charge compensation [6], by pointing an electron beam emitted from a flood gun, onto the area of analysis. The first HIM micrographs of biological specimens were published between 2007 and 2010 [2][5][7], but did
PDF
Album
Review
Published 04 Jan 2021

Helium ion microscope – secondary ion mass spectrometry for geological materials

  • Matthew R. Ball,
  • Richard J. M. Taylor,
  • Joshua F. Einsle,
  • Fouzia Khanom,
  • Christelle Guillermier and
  • Richard J. Harrison

Beilstein J. Nanotechnol. 2020, 11, 1504–1515, doi:10.3762/bjnano.11.133

Graphical Abstract
  • collisions with other samples if the heights and, therefore, focal distance is not constant. Sample coating Due to size constraints within the chamber, it is currently not possible to have both an electron flood gun and SIMS attachment on the same device. This is a problem for geological samples, as the vast
PDF
Album
Full Research Paper
Published 02 Oct 2020

An atomic force microscope integrated with a helium ion microscope for correlative nanoscale characterization

  • Santiago H. Andany,
  • Gregor Hlawacek,
  • Stefan Hummel,
  • Charlène Brillard,
  • Mustafa Kangül and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2020, 11, 1272–1279, doi:10.3762/bjnano.11.111

Graphical Abstract
  • . With the integrated electron flood gun (FG) of the HIM providing charge neutralization, uncoated polymers and biological samples can be imaged with high resolution while the AFM would bring complementary information such as laterally resolved mechanical properties. These multiparametric measurements
PDF
Album
Full Research Paper
Published 26 Aug 2020

Synthesis of amorphous and graphitized porous nitrogen-doped carbon spheres as oxygen reduction reaction catalysts

  • Maximilian Wassner,
  • Markus Eckardt,
  • Andreas Reyer,
  • Thomas Diemant,
  • Michael S. Elsaesser,
  • R. Jürgen Behm and
  • Nicola Hüsing

Beilstein J. Nanotechnol. 2020, 11, 1–15, doi:10.3762/bjnano.11.1

Graphical Abstract
  • support to the C 1s signal of the carbon-containing catalyst film. The spectra showed minor charging effects, which were compensated by a neutralizer (low-energy electron flood gun). The C 1s peak was set to 284.8 eV for binding energy calibration [50]. Evaluation and deconvolution of the measured signals
PDF
Album
Full Research Paper
Published 02 Jan 2020

Rapid thermal annealing for high-quality ITO thin films deposited by radio-frequency magnetron sputtering

  • Petronela Prepelita,
  • Ionel Stavarache,
  • Doina Craciun,
  • Florin Garoi,
  • Catalin Negrila,
  • Beatrice Gabriela Sbarcea and
  • Valentin Craciun

Beilstein J. Nanotechnol. 2019, 10, 1511–1522, doi:10.3762/bjnano.10.149

Graphical Abstract
  • spectroscopy (XPS) method. A SPECS spectrometer with a PHOIBOS RX 150 analyzer and a Specs XR–50 M source was operated with a monochromatic Al anode (hν = 1486.61 eV) at 300 W. The charging effect of the sample deposited onto the quartz substrate is compensated for with a Specs FG15/40 flood gun. The chemical
PDF
Album
Full Research Paper
Published 25 Jul 2019

Growth of lithium hydride thin films from solutions: Towards solution atomic layer deposition of lithiated films

  • Ivan Kundrata,
  • Karol Fröhlich,
  • Lubomír Vančo,
  • Matej Mičušík and
  • Julien Bachmann

Beilstein J. Nanotechnol. 2019, 10, 1443–1451, doi:10.3762/bjnano.10.142

Graphical Abstract
  • collected using the pass energy of 50 eV. Charge compensation was achieved with the system dual beam flood gun. The Thermo Scientific Avantage software, version 5.9904 (Thermo Fisher Scientific), was used for digital acquisition and data processing. Spectral calibration was determined by using the automated
PDF
Album
Full Research Paper
Published 18 Jul 2019

Formation mechanisms of boron oxide films fabricated by large-area electron beam-induced deposition of trimethyl borate

  • Aiden A. Martin and
  • Philip J. Depond

Beilstein J. Nanotechnol. 2018, 9, 1282–1287, doi:10.3762/bjnano.9.120

Graphical Abstract
  • (99.95+%, Strem Chemicals, vapor pressure: 13.7 × 103 Pa at 20 °C [21], thermally stable up to a minimum of 470 °C [22]) at various substrate temperatures using a custom-built, large-area deposition system (Figure 1c). The deposition system consists of an electron flood gun (Perkin-Elmer, Model 11-010
  • processing. The electron flood gun based system enabled the deposition of boron-containing material with a minimum deposition cross-section of 500 μm in diameter. The results describe the first boron-containing material deposited via the EBID method and demonstrate a large-area system that extends the
  • molecules creating non-volatile fragments that bind to the surface forming a solid. (c) Schematic of the system using large-area EBID. The system comprises an electron flood gun, heater assembly, substrate current measurement circuitry, and three differentially pumped vacuum regions (PE, PI and PC), which
PDF
Album
Supp Info
Letter
Published 24 Apr 2018

Graphene composites with dental and biomedical applicability

  • Sharali Malik,
  • Felicite M. Ruddock,
  • Adam H. Dowling,
  • Kevin Byrne,
  • Wolfgang Schmitt,
  • Ivan Khalakhan,
  • Yoshihiro Nemoto,
  • Hongxuan Guo,
  • Lok Kumar Shrestha,
  • Katsuhiko Ariga and
  • Jonathan P. Hill

Beilstein J. Nanotechnol. 2018, 9, 801–808, doi:10.3762/bjnano.9.73

Graphical Abstract
  • 0.47 eV). High resolution spectra for the core level C 1s and O 1s were recorded in 0.05 eV steps. An electron flood gun was used during the measurements to prevent sample charging. The FLG material was also characterized by TEM, HRTEM (Jeol ARM at 80 kV) and helium ion microscopy (HeIM, Zeiss Orion at
PDF
Album
Full Research Paper
Published 05 Mar 2018

Electron interactions with the heteronuclear carbonyl precursor H2FeRu3(CO)13 and comparison with HFeCo3(CO)12: from fundamental gas phase and surface science studies to focused electron beam induced deposition

  • Ragesh Kumar T P,
  • Paul Weirich,
  • Lukas Hrachowina,
  • Marc Hanefeld,
  • Ragnar Bjornsson,
  • Helgi Rafn Hrodmarsson,
  • Sven Barth,
  • D. Howard Fairbrother,
  • Michael Huth and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2018, 9, 555–579, doi:10.3762/bjnano.9.53

Graphical Abstract
  • conditions (Pbase < 4 × 10−9 mbar). Ultra-thin (<2–3 nm) H2FeRu3(CO)13 films were deposited onto a cooled, sputter-cleaned Au substrate before being exposed to 500 eV incident electrons generated by a commercial flood gun. The effect of electron irradiation on the adsorbed H2FeRu3(CO)13 molecules as
PDF
Album
Supp Info
Full Research Paper
Published 14 Feb 2018

Electron-driven and thermal chemistry during water-assisted purification of platinum nanomaterials generated by electron beam induced deposition

  • Ziyan Warneke,
  • Markus Rohdenburg,
  • Jonas Warneke,
  • Janina Kopyra and
  • Petra Swiderek

Beilstein J. Nanotechnol. 2018, 9, 77–90, doi:10.3762/bjnano.9.10

Graphical Abstract
  • -stimulated desorption (ESD) isothermal experiments, the sample was kept at the lowest attainable temperature and exposed to electron irradiation using a commercial flood gun (SPECS FG 15/40). This electron source delivers electrons with tunable kinetic energy (E0) at an estimated resolution of the order of
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2018

Patterning of supported gold monolayers via chemical lift-off lithography

  • Liane S. Slaughter,
  • Kevin M. Cheung,
  • Sami Kaappa,
  • Huan H. Cao,
  • Qing Yang,
  • Thomas D. Young,
  • Andrew C. Serino,
  • Sami Malola,
  • Jana M. Olson,
  • Stephan Link,
  • Hannu Häkkinen,
  • Anne M. Andrews and
  • Paul S. Weiss

Beilstein J. Nanotechnol. 2017, 8, 2648–2661, doi:10.3762/bjnano.8.265

Graphical Abstract
  • insulator, a charge neutralizer (flood gun) was used to offset charging of the samples that otherwise impedes spectral acquisition. Doing so, however, causes the peak to shift to lower energies as compared to their expected energy obtained without using a flood gun. Chan–Vese segmentation In our
PDF
Album
Supp Info
Full Research Paper
Published 08 Dec 2017

Amplified cross-linking efficiency of self-assembled monolayers through targeted dissociative electron attachment for the production of carbon nanomembranes

  • Sascha Koch,
  • Christopher D. Kaiser,
  • Paul Penner,
  • Michael Barclay,
  • Lena Frommeyer,
  • Daniel Emmrich,
  • Patrick Stohmann,
  • Tarek Abu-Husein,
  • Andreas Terfort,
  • D. Howard Fairbrother,
  • Oddur Ingólfsson and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2017, 8, 2562–2571, doi:10.3762/bjnano.8.256

Graphical Abstract
  • minutes. The electron dose was calibrated by means of a mobile Faraday cup built for the sample stage of the analysis chamber. The electron current between the flood gun and the cup was measured for an array of lateral positions. As a result, one minute of electron irradiation at a beam energy of 50 eV
PDF
Album
Full Research Paper
Published 30 Nov 2017

Fundamental properties of high-quality carbon nanofoam: from low to high density

  • Natalie Frese,
  • Shelby Taylor Mitchell,
  • Christof Neumann,
  • Amanda Bowers,
  • Armin Gölzhäuser and
  • Klaus Sattler

Beilstein J. Nanotechnol. 2016, 7, 2065–2073, doi:10.3762/bjnano.7.197

Graphical Abstract
  • samples were not coated with conductive layers, an electron flood gun was applied to stabilize charging. Prior to imaging, the foam material was attached to the HIM sample holder with conductive carbon pads. The HIM induces a high brightness, low-energy spread, subnanometer-size beam of helium ions [25
PDF
Album
Full Research Paper
Published 27 Dec 2016

Effect of Anderson localization on light emission from gold nanoparticle aggregates

  • Mohamed H. Abdellatif,
  • Marco Salerno,
  • Gaser N. Abdelrasoul,
  • Ioannis Liakos,
  • Alice Scarpellini,
  • Sergio Marras and
  • Alberto Diaspro

Beilstein J. Nanotechnol. 2016, 7, 2013–2022, doi:10.3762/bjnano.7.192

Graphical Abstract
  • lens mode was used for both wide and narrow scans. For the wide scan, the energy pass was 90 eV, the energy step was 0.5 eV and the scan number was 2. For the narrow high-resolution scan, the energy pass was 30 eV, the energy step was 0.1 eV, and the scan number was 20. A flood gun was used to
PDF
Album
Supp Info
Full Research Paper
Published 16 Dec 2016

Efficient electron-induced removal of oxalate ions and formation of copper nanoparticles from copper(II) oxalate precursor layers

  • Kai Rückriem,
  • Sarah Grotheer,
  • Henning Vieker,
  • Paul Penner,
  • André Beyer,
  • Armin Gölzhäuser and
  • Petra Swiderek

Beilstein J. Nanotechnol. 2016, 7, 852–861, doi:10.3762/bjnano.7.77

Graphical Abstract
  • chamber with base pressure of 1 × 10−8 mbar and irradiated using an electron flood-gun (FG15/40, Specs), which generates a sufficiently divergent beam to grant a uniform irradiation of the samples. Experiments were performed at electron energies of 50 or 500 eV with exposures ranging from 125 to 30000 μC
  • /cm2. Samples were exposed to air between electron irradiation and the RAIRS measurements. Samples studied by XPS were irradiated in situ with an electron flood-gun (SL1000, Omicron) thus excluding contact of the samples with air between electron irradiation and XPS measurements. Samples were uniformly
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2016

Hydration of magnesia cubes: a helium ion microscopy study

  • Ruth Schwaiger,
  • Johannes Schneider,
  • Gilles R. Bourret and
  • Oliver Diwald

Beilstein J. Nanotechnol. 2016, 7, 302–309, doi:10.3762/bjnano.7.28

Graphical Abstract
  • , most importantly, without coating the samples for charge compensation. Sample charging effects that typically occur during imaging of insulating samples can be counteracted in the HIM by using a low-energy electron flood gun for charge compensation [7]. Although charging is a problem for MgO, in this
  • study the flood gun was not needed because a metallic substrate was used. Additionally, metal oxides can also be damaged by an electron beam [17]. Indeed, imaging metastable oxide and hydroxide nano- and mesostructures with SEM is difficult due to the effect the electron beam may have on the sample. For
PDF
Album
Supp Info
Full Research Paper
Published 29 Feb 2016

Imaging of carbon nanomembranes with helium ion microscopy

  • André Beyer,
  • Henning Vieker,
  • Robin Klett,
  • Hanno Meyer zu Theenhausen,
  • Polina Angelova and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2015, 6, 1712–1720, doi:10.3762/bjnano.6.175

Graphical Abstract
  • major advantage of HIM is its ability to compensate for sample charging by employing an electron flood gun in an alternating manner. In this way, the sample is exposed to electrons between scans of subsequent image lines or frames. There is scarce literature on HIM imaging of ultrathin membranes. Many
  • for CNMs on the gold support bars. Thereby, it increases the contrast between covered and bare gold surfaces. The effectiveness of the electron flood gun for charge compensation in HIM is demonstrated by the images in Figure 6. A large area (i.e. ≈0.5 × 0.5 mm2), freestanding CNM is imaged without and
  • where the membranes were exposed to highly charged ions [27]. This treatment induced nanopores in the size range of 10 nm, which were imaged by HIM with a reasonably high resolution [27]. Note that high resolution imaging of large freestanding CNMs requires the use of the electron flood gun for charge
PDF
Album
Supp Info
Full Research Paper
Published 12 Aug 2015

Scanning reflection ion microscopy in a helium ion microscope

  • Yuri V. Petrov and
  • Oleg F. Vyvenko

Beilstein J. Nanotechnol. 2015, 6, 1125–1137, doi:10.3762/bjnano.6.114

Graphical Abstract
  • . The energy of the He ions was 35 keV with a beam current of 0.5 pA. The compensation of the sample charge by the electron flood gun was not possible due to the configuration of the sample holder. The following model test samples were investigated: (1) a Au on carbon SEM test sample from Agar
  • compensation by an electron flood gun. Imaging with a flood gun requires accurate adjustment of the flood gun parameters and ion beam parameters to neutralize the surface charge. The scan speed decreases when line-by-line charge compensation is used. The reflected ions are less sensitive to surface charge than
  • over the use of a flood gun is determined by the sample surface details. Unfortunately, the construction of the RIM specimen holder does not allow for charge compensation, and a direct comparison of these methods is impossible. Beside the factors mentioned above, the sensitivity and the precision of
PDF
Album
Full Research Paper
Published 07 May 2015

Study of mesoporous CdS-quantum-dot-sensitized TiO2 films by using X-ray photoelectron spectroscopy and AFM

  • Mohamed N. Ghazzal,
  • Robert Wojcieszak,
  • Gijo Raj and
  • Eric M. Gaigneaux

Beilstein J. Nanotechnol. 2014, 5, 68–76, doi:10.3762/bjnano.5.6

Graphical Abstract
  • (1486.6 eV) radiation (10 kV; 22 mA). Charge stabilization was achieved by using an electron flood gun adjusted at 8 eV and placing a nickel grid 3 mm above the sample. Pass energy for the analyzer was set to 160 eV for wide scan. The analyzed area was approximately 1.4 mm2 and the pass energy was set to
PDF
Album
Full Research Paper
Published 20 Jan 2014

Mechanical characterization of carbon nanomembranes from self-assembled monolayers

  • Xianghui Zhang,
  • André Beyer and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2011, 2, 826–833, doi:10.3762/bjnano.2.92

Graphical Abstract
  • dimethylformamide (DMF) with 10 mmol BPT or NBPT molecules for 72 h in a sealed flask under nitrogen atmosphere. Cross-linking was achieved in high vacuum (<5 × 10−8 mbar) with an electron flood gun at an electron energy of 100 eV and a current of 3 mA. Freestanding CBPS CNMs were obtained by dissolving the Si3N4
PDF
Album
Video
Full Research Paper
Published 20 Dec 2011
Other Beilstein-Institut Open Science Activities